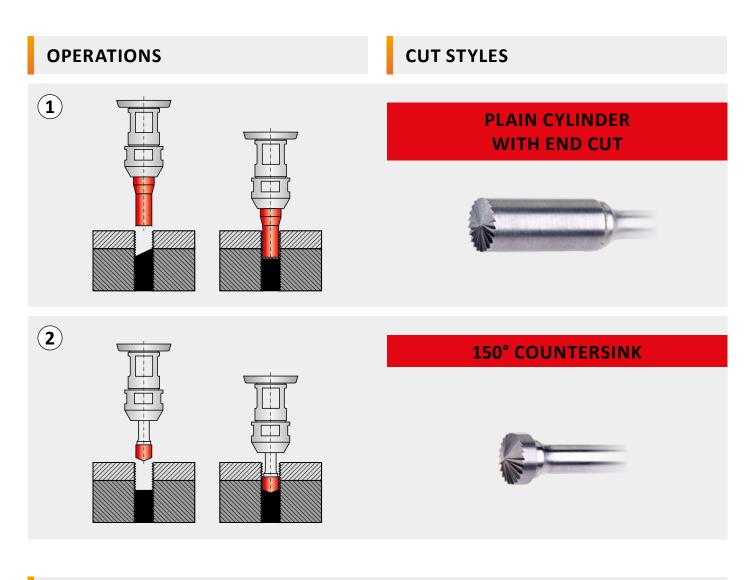
P100

1st Stage Rotary Burr for Broken Bolt Removal, Cylinder with End Cut

First stage broken bolt removal solid carbide burr. When a bolt is broken and needs to be extracted, first use P100 to flatten the broken bolt surface. Secondly use P101. This series of burrs makes sure the threaded hole is not damaged when removing the broken piece.

				Work	piece materia	al group suita	bility. Recomn	ended opera	ating speed (R	PM) on page 2	7 and 'how to	use the tool' o	n page 2.
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	M1.1	<mark>M1.2</mark>	<mark>M2.1</mark>
<mark>M2.2</mark>	<mark>M2.3</mark>	<mark>M3.1</mark>	M3.2	<mark>M3.3</mark>									
		DC		DCON MS			LU			OAL			
Product					Deon mo					ONL		+ +	
			[mm]		[mm]		[mn]		[mm]			
P1004.9			4.90		6.00		20.)0		50.0		1/4-20; 24;	28; M6
P1006.4			6.40		6.00		5.0	0		50.0		5/16-18; 24;	32; M8
P1007.8			7.80		6.00		19.0	00		65.0		3/8-16; 24	; M10
P1009.3			9.30		6.00		19.0	00		65.0		7/16-14; 20); M12
P10010.7		1	10.70		6.00		25.	00		70.0		1/2-13; 20	; M14


CARBIDE ROTARY BURRS

FOR BOLT REMOVAL

A specially designed range of burrs to prepare the surface of broken bolts to improve drill location and prevent damaging the threaded hole and component.

FEATURES AND BENEFITS

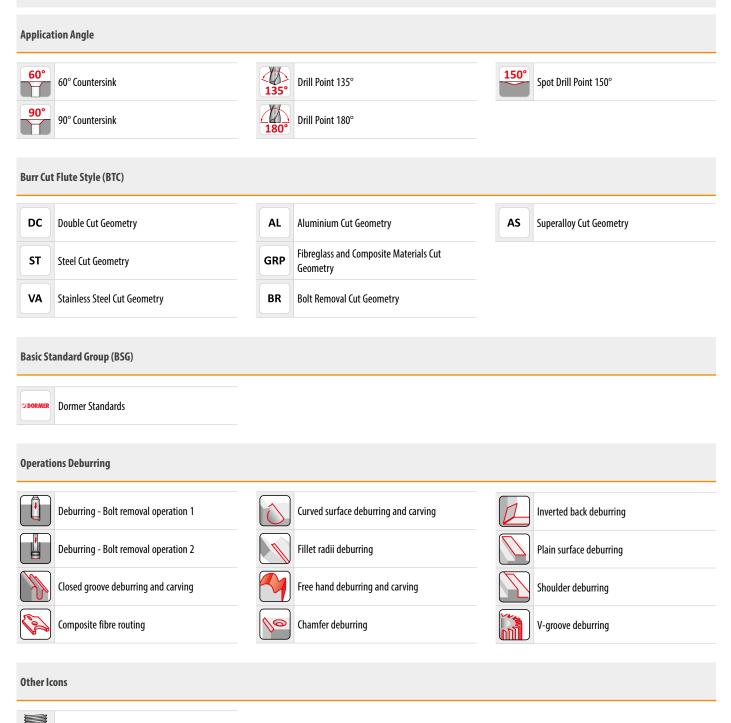
- Specific diameters and cutting lengths to suit various thread diameters
- Long reach and tapered shanks for easy access
- Developed cutting geometry for machining high tensile materials
- Reduces potential damage to existing threaded holes
- Improves drill location, ensuring damaged bolt is drilled on centre
- Prevents potential scrappage of component
- Highly consistent quality

HOW TO USE THE TOOLS

- Choose the correct size burr for the broken bolt
- Use a right-handed die grinder
- Ensure the burr is perpendicular to the broken bolt
- Grind the broken surface flat Operation 1
- Grind into the prepared surface to form

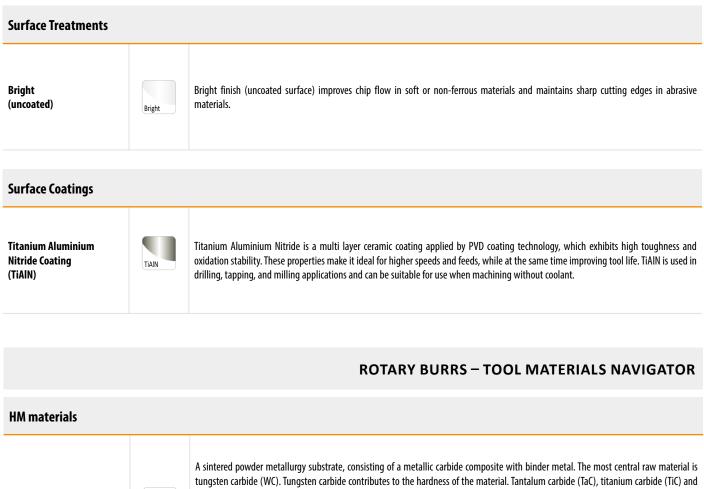
 a countersink location at the centre point of the bolt –
 Operation (2)

ROTARY BURRS – ICONS OVERVIEW


General	lcons				
	Primary use				
	Possible use				
Materia	l Code (BMC)				
НМ	Hard Material (Solid Carbide)				
Burr Sha	ape				
A	Cylinder Shape without endcut	F	Ball Nosed Tree Shape	LV	Ball Nosed Cone Shape
B	Cylinder Shape with endcut	G	Pointed Tree Shape		Cone Shape
C	Ball Nosed Cylinder Shape	H	Flame Shape	N	Inverted Cone Shape
	Ball Shape	J	60° Countersink Shape		
E	Oval Shape	K₽	90° Countersink Shape		
Burr End	d Shot				
	Drill Point Burr End				
	End Cut Burr End				
	End Mill Burr End				

Coating

Titanium Aluminium Nitride Coating


ROTARY BURRS – ICONS OVERVIEW

Bolt size

ROTARY BURRS – SURFACE AND TREATMENTS COATINGS NAVIGATOR

Carbide Materials

(or Hard Materials)

tungsten carbide (WC). Tungsten carbide contributes to the hardness of the material. Tantalum carbide (TaC), titanium carbide (TiC) and niobium carbide (NbC) complements WC and adjusts the properties to what is desired. These three materials are called cubic carbides. Cobalt (Co) acts as a binder and keeps the material together.
 Carbide materials are often characterised by high compression strength, high hardness and therefore high wear resistance, but also by

Carbide materials are often characterised by high compression strength, high hardness and therefore high wear resistance, but also by limited flexural strength and toughness. Carbide is used in taps, reamers, milling cutters, drills and thread milling cutters.

WMG (WORK MATERIAL GROUP)

ISO gi	oup	WM	G (Work Material Group)		Hardness (HB or HRC)	Ultimate Tensile Strength (MPa)
		P1.1	Free machining steel	Sulfurized	< 240 HB	≤ 830
	P1	P1.2	Free machining steel (carbon steels with increased machinability)	Sulfurized and phosphorized	< 180 HB	≤ 620
		P1.3		Sulfurized/phosphorized and leaded	< 180 HB	≤ 620
		P2.1	Plain carbon steel	Containing <0.25 % C	< 180 HB	≤ 620
	P2	P2.2	(steels comprised of mainly iron and carbon)	Containing <0.55 % C	< 240 HB	≤ 830
D		P2.3		Containing >0.55 % C	< 300 HB	≤ 1030
Ρ		P3.1	AU	Annealed	< 180 HB	≤ 620
	P3	P3.2	Alloy steel (carbon steels with an alloying content \leq 10%)	Wardened and tempered	180 – 260 HB	$> 620 \leq 900$
		P3.3	(calbon steers with an anoying content ≤ 1070)	Hardened and tempered	260 - 360 HB	> 900 ≤ 1240
		P4.1	- · · · ·	Annealed	< 26 HRC	≤ 900
	P4	P4.2	Tool steel - (special alloy steel for tools, dies and molds)	llendered and territorial	26 – 39 HRC	> 900 ≤ 1240
		P4.3	(special andy steel for tools, dies and molds)	Hardened and tempered	39 – 45 HRC	> 1240 ≤ 1450
	141	M1.1	Ferritic stainless steel		< 160 HB	≤ 520
	M1	M1.2	(straight chromium non-hardenable alloys)		160 – 220 HB	> 520 ≤ 700
		M2.1		Annealed	< 200 HB	≤ 670
	M2	M2.2	Martensitic stainless steel	Quenched and tempered	200 – 280 HB	> 670 ≤ 950
		M2.3	(straight chromium hardenable alloys)	Precipitation-hardened	280 - 380 HB	> 950 ≤ 1300
R A		M3.1		•	< 200 HB	≤ 750
IN	M3	M3.2	Austenitic stainless steel		200 – 260 HB	> 750 ≤ 870
	1115	M3.3	(chromium-nickel and chromium-nickel-manganese alloys)		260 – 300 HB	> 870 ≤ 1040
	M4	M4.1	Austenitic-ferritic (DUPLEX) or super-austenitic stainless steel		< 300 HB	≤ 990
		M4.2	Precipitation hardening austenitic stainless steel		300 – 380 HB	≤ 1320
		K1.1		Ferritic or ferritic-pearlitic	< 180 HB	≤ 190
	K1	K1.2	Gray iron or Automotive Gray iron (GG)	Ferritic-pearlictic or pearlitic	180 – 240 HB	> 190 ≤ 310
		K1.3	(iron-carbon castings with a lamellar graphite microstructure)	Pearlitic	240 – 280 HB	> 310 ≤ 390
		K2.1		Ferritic	< 160 HB	≤ 400
	K2	K2.2	Malleable iron (GTS/GTW)	Ferritic or pearlitic	160 – 200 HB	> 400 ≤ 550
	112	K2.3	(iron-carbon castings with a graphite-free microstructure)	Pearlitic	200 – 240 HB	> 550 ≤ 660
		K3.1		Ferritic	< 180 HB	≤ 560
	K3	K3.2	Ductile iron (GGG)	Ferritic or pearlitic	180 – 220 HB	> 560 ≤ 680
		K3.3	(iron-carbon castings with a nodular graphite microstructure)	Pearlitic	220 – 260 HB	> 680 ≤ 800
		KJ.J		realific	220 - 200110	>000 ≤ 000
K		K4.1	Austenitic gray iron (ASTM A436) (iron-carbon alloy castings with an austenitic lamellar graphite microstructure)		< 180 HB	≤ 190
	K4	K4.2	Austenitic ductile iron (ASTM A439 or ASTM A571) (iron-carbon alloy castings with an austenitic nodular graphite microstructure)		< 240 HB	≤ 740
		K4.3		< 280 HB	$> 840 \le 980$	
		K4.4	Austempered ductile iron (ASTM A897) (iron-carbon alloy castings with an ausferrite microstructure)		280 - 320 HB	> 980 ≤ 1130
		K4.5	(non carbon andy castings with an austernice iniciosit acture)		320 – 360 HB	> 1130 ≤ 1280
		K5.1	Compacted graphite iron CGI (ASTM A842)	Ferritic	< 180 HB	≤ 400
	K5	K5.2	(iron-carbon castings with a vermicular graphite structure)	Ferritic-pearlitic	180 – 220 HB	$> 400 \le 450$
		K5.3	(ion cason casings min a remicalar graphice stracture)	Pearlitic	220 – 260 HB	$>450 \leq 500$
		N1.1	Commercially pure wrought aluminium		< 60 HB	≤ 240
	N1	N1.2	Wrought aluminium alloys	Half hard tempered	60 - 100 HB	$> 240 \le 400$
		N1.3	wrougiit aiuillilluill alloys	Full hard tempered	100 – 150 HB	> 400 ≤ 590
		N2.1			< 75 HB	≤ 240
	N2	N2.2	Cast aluminium alloys		75 – 90 HB	> 240 ≤ 270
		N2.3			90 - 140 HB	> 270 ≤ 440
		N3.1	Free-cutting copper-alloys materials with excellent machining properties		_	_
Ν	N3	N3.2	Short-chip copper-alloys with good to moderate machining properties		_	_
	115					
		N3.3			-	-
		N4.1	Thermoplastic polymers		_	-
	N4		Thermosetting polymers		-	-
		N4.3	Reinforced polymers or composites		-	-
	N5	N5.1	Graphite		-	-
		S1.1			< 200 HB	≤ 660
	S1	S1.2	Titanium or titanium alloys		200 – 280 HB	> 660 ≤ 950
		S1.3			280 – 360 HB	> 950 ≤ 1200
C	S2	S2.1	Fe-based high-temperature alloys		< 200 HB	≤ 690
2		S2.2			200 – 280 HB	> 690 ≤ 970
	S 3	\$3.1	Ni-based high-temperature alloys		< 280 HB	≤ 940
		S3.2			280 – 360 HB	> 940 ≤ 1200
	S4	S4.1 S4.2	Co-based high-temperature alloys		< 240 HB 240 – 320 HB	≤ 800 > 800 ≤ 1070
	H1	H1.1	Chilled cast iron		< 440 HB	-
		H2.1			< 55 HRC	_
			Hardened cast iron		> 55 HRC	-
	H2	H2.2				
μ		H2.2 H3.1			< 51 HRC	-
H	H2 H3	H3.1	Hardened steel <55 HRC		< 51 HRC 51 – 55 HRC	
H			Hardened steel <55 HRC Hardened steel >55 HRC		< 51 HRC 51 – 55 HRC 55 – 59 HRC	

RECOMMENDED OPERATING SPEED (RPM)

AL DC								
					RPM			
ISO					DC [mm]			
		3	6	8	10	12	16	20
Р	min	64 000	32 000	24 000	20 000	16 000	12 000	10 000
r	max	83 000	42 000	32 000	25 000	21 000	16 000	13 000
	min	45 000	23 000	17 000	14 000	12 000	9 000	7 000
М	max	64 000	32 000	24 000	20 000	16 000	12 000	10 000
1/	min	58 000	29 000	22 000	19 000	15 000	11 000	9 000
K	max	77 000	39 000	29 000	23 000	20 000	15 000	12 000
N	min	64 000	32 000	24 000	20 000	16 000	12 000	10 000
Ν	max	96 000	48 000	36 000	29 000	24 000	18 000	15 000
~	min	45 000	23 000	17 000	14 000	12 000	9 000	7 000
S	max	58 000	29 000	22 000	18 000	15 000	11 000	9 000
	min	51 000	26 000	20 000	16 000	13 000	10 000	8 000
H	max	71 000	36 000	27 000	22 000	18 000	14 000	11 000

ST BI	R					
				RPM		
ISO				DC [mm]		
		3	6	8	10	12
D	min	100 000	65 000	60 000	55 000	35 000
F	max	60 000	45 000	35 000	30 000	20 000

VA BR							
				RPM			
ISO	DC [mm]						
		3	6	8	10	12	
М	min	100 000	65 000	60 000	55 000	35 000	
IVI	max	60 000	30 000	25 000	20 000	15 000	

GRP				
			RPM	
ISO			DC [mm]	
		3	6	8
N4	min	25 000	20 000	18 000
184	max	30 000	25 000	22 000

AS					
		RPM			
ISO		DC [mm]			
		3			
S	min	60 000			
2	max	80 000			