DORMER

P101

2nd Stage Rotary Burr for Broken Bolt Removal, 150° Countersink Second stage broken bolt removal solid carbide burr. When a bolt is broken and needs to be extracted, P101 creates a centerpoint into the flattened broken bolt. Prepare it for the 3rd stage, drilling the broken piece with a drill.

				Work	Workpiece material group suitability. Recommended operating speed (RPM) on page 7 and 'how to use the				use the tool' o	n page 2.			
P1.1	P1.2	P1.3	P2.1	P2.2	P2.3	P3.1	P3.2	P3.3	P4.1	P4.2	<mark>M1.1</mark>	M1.2	<mark>M2.1</mark>
M2.2	M2.3	M3.1	M3.2	M3.3									
			DC		DCONING					041			
Product			DC		DCOIN W2		LL			UAL			
			[mm]		[mm]		(mn]		[mm]			
P1014.9			4.90		6.00		20.	00		50.0		1/4-20; 24; 2	28; M6
P1016.4			6.40		6.00		5.0	0		50.0		5/16-18; 24;	32; M8
P1017.8			7.80		6.00		5.0	0		50.0		3/8-16; 24;	: M10
P1019.3		9.30 6.00		6.00		5.00		50.0		7/16-14; 20	; M12		
P10110.7		10.70		6.00		5.0	0		50.0		1/2-13; 20;	M14	

CARBIDE ROTARY BURRS

FOR BOLT REMOVAL

A specially designed range of burrs to prepare the surface of broken bolts to improve drill location and prevent damaging the threaded hole and component.

FEATURES AND BENEFITS

- Specific diameters and cutting lengths to suit various thread diameters
- Long reach and tapered shanks for easy access
- Developed cutting geometry for machining high tensile materials
- Reduces potential damage to existing threaded holes
- Improves drill location, ensuring damaged bolt is drilled on centre
- Prevents potential scrappage of component
- Highly consistent quality

HOW TO USE THE TOOLS

- Choose the correct size burr for the broken bolt
- Use a right-handed die grinder
- Ensure the burr is perpendicular to the broken bolt
- Grind the broken surface flat Operation 1
- Grind into the prepared surface to form

 a countersink location at the centre point of the bolt –
 Operation (2)

ROTARY BURRS – ICONS OVERVIEW

General	lcons				
	Primary use				
	Possible use				
Materia	l Code (BMC)				
НМ	Hard Material (Solid Carbide)				
Burr Sha	ape				
A	Cylinder Shape without endcut	F	Ball Nosed Tree Shape	LV	Ball Nosed Cone Shape
B	Cylinder Shape with endcut	G	Pointed Tree Shape		Cone Shape
C	Ball Nosed Cylinder Shape	H	Flame Shape	N	Inverted Cone Shape
	Ball Shape	J	60° Countersink Shape		
E	Oval Shape	K₽	90° Countersink Shape		
Burr End	d Shot				
	Drill Point Burr End				
	End Cut Burr End				
\bigcirc	End Mill Burr End				

Coating

Titanium Aluminium Nitride Coating

ROTARY BURRS – ICONS OVERVIEW

Bolt size

ROTARY BURRS – SURFACE AND TREATMENTS COATINGS NAVIGATOR

Carbide Materials

(or Hard Materials)

tungsten carbide (WC). Tungsten carbide contributes to the hardness of the material. Tantalum carbide (TaC), titanium carbide (TiC) and niobium carbide (NbC) complements WC and adjusts the properties to what is desired. These three materials are called cubic carbides. Cobalt (Co) acts as a binder and keeps the material together.
 Carbide materials are often characterised by high compression strength, high hardness and therefore high wear resistance, but also by

Carbide materials are often characterised by high compression strength, high hardness and therefore high wear resistance, but also by limited flexural strength and toughness. Carbide is used in taps, reamers, milling cutters, drills and thread milling cutters.

WMG (WORK MATERIAL GROUP)

ISO gro	цр	WMG	i (Work Material Group)		Hardness (HB or HRC)	Ultimate Tensile Strength (MPa)
		P11		Sulfurized	< 240 HB	< 830
	D1	P1 2	Free machining steel	Sulfurized and phosphorized	< 180 HB	<u>≤</u> 630
	r i	D1 2	(carbon steels with increased machinability)	Sulfurized and phosphorized	< 100 HD	≤ 020 < 620
		F1.3		Containing <0.25 % C	< 100 HD	≤ 020
	5	P2.1	Plain carbon steel	Containing < 0.25 % C	< 180 HB	≤ 620 < 820
	Р2 Р3	P2.2	(steels comprised of mainly iron and carbon)	Containing < 0.55 % C	< 240 HB	≤ 830
D		P2.3		Containing >0.55 % C	< 300 HB	≤ 1030
		P3.1	Alloy steel	Annealed	< 180 HB	≤ 620
		P3.2	(carbon steels with an alloving content < 10%)	Hardened and tempered	180 – 260 HB	> 620 ≤ 900
		P3.3	(carbon steels man and sing concert = 1070)	narachea ana temperea	260 – 360 HB	$> 900 \le 1240$
		P4.1	Tolast	Annealed	< 26 HRC	≤ 900
	P4	P4.2	1001 STEEL (crossial allow staal for tools, dias and molds)	Harden da da maria d	26 – 39 HRC	> 900 ≤ 1240
		P4.3	(special alloy steel for tools, dies and morus)	Hardened and tempered	39 – 45 HRC	> 1240 ≤ 1450
		M1.1	Ferritic stainless steel		< 160 HB	< 520
	M1	M1 2	(straight chromium non-hardenable alloys)		160 - 220 HB	> 520 < 700
		M2.1	(Annealed	< 200 HB	< 670
	мэ	M2.1	Martensitic stainless steel	Autorched and tempered	200110	> 670 < 050
	IVIZ	IVIZ.Z	(straight chromium hardenable alloys)	Quenched and tempered	200 - 200 HD	> 0/0 ≤ 930
		M2.3		Precipitation-nardened	280 – 380 HB	> 950 ≤ 1300
M		M3.1	Austanitic stainlass staal		< 200 HB	≤ 750
141	M3	M3.2	(chromium-nickel and chromium-nickel-manganese alloys)		200 – 260 HB	> 750 ≤ 870
		M3.3	(en onitain meter and en onitain meter manganese anoys)		260 – 300 HB	$> 870 \le 1040$
	М4	M4.1	Austenitic-ferritic (DUPLEX) or super-austenitic stainless steel		< 300 HB	≤ 990
		M4.2	Precipitation hardening austenitic stainless steel		300 – 380 HB	≤ 1320
		K11		Ferritic or ferritic-nearlitic	< 180 HR	< 190
	K1	K1 2	Gray iron or Automotive Gray iron (GG)	Ferritic-pearlictic or pearlitic	180 - 240 HR	> 190 < 210
	N1	V1.2	(iron-carbon castings with a lamellar graphite microstructure)	Populitic	240 10	> 100 = 310
		K1.5		Fedinic	240 - 200 HD	> 310 ≤ 390
	1/2	K2.1	Malleable iron (GTS/GTW)	Ferritic	< 100 HB	≤ 400
	K2	K2.2	(iron-carbon castings with a graphite-free microstructure)	Ferritic or pearlitic	160 – 200 HB	> 400 ≤ 550
		K2.3		Pearlitic	200 – 240 HB	> 550 ≤ 660
		K3.1	Ductile iron (GGG)	Ferritic	< 180 HB	≤ 560
	K3	K3.2	(iron-carbon castings with a nodular graphite microstructure)	Ferritic or pearlitic	180 – 220 HB	> 560 ≤ 680
		K3.3	······································	Pearlitic	220 – 260 HB	$> 680 \le 800$
K		K4.1	Austenitic gray iron (ASTM A436) (iron-carbon alloy castings with an austenitic lamellar graphite microstructure)		< 180 HB	≤ 190
	K4	K4.2	Austenitic ductile iron (ASTM A439 or ASTM A571) (iron-carbon alloy castings with an austenitic nodular graphite microstructure)		< 240 HB	≤ 740
		K4.3			< 280 HB	> 840 ≤ 980
		K4.4	Austempered ductile iron (ASTM A897) (iron, carbon allow castings with an ausforrito microstructure)		280 - 320 HB	> 980 ≤ 1130
		K4.5	(non-carbon anoy castings with an austernite iniciostructure)		320 - 360 HB	> 1130 ≤ 1280
		K5.1		Ferritic	< 180 HB	≤ 400
	K5	K5.2	Compacted graphite iron CGI (ASTM A842)	Ferritic-pearlitic	180 – 220 HB	> 400 ≤ 450
		K5.3	(iron-carbon castings with a vermicular graphite structure)	Pearlitic	220 – 260 HB	> 450 < 500
		N11	Commercially pure wrought aluminium		< 60 HB	< 240
	N1	N1 2		Half hard tempered	60 - 100 HB	> 240 < 400
	IN I	N1 2	Wrought aluminium alloys	Full hard tempered	100 100110	> 400 < 500
		ND 1		Full hard tempered		> 400 ≤ 390
		NZ.I			< /5 HB	≤ 240
	N2	N2.2	Cast aluminium alloys		75 – 90 HB	> 240 ≤ 2/0
		N2.3			90 – 140 HB	> 2/0 ≤ 440
Ν		N3.1	Free-cutting copper-alloys materials with excellent machining properties		-	-
IN	N3	N3.2	Short-chip copper-alloys with good to moderate machining properties		-	-
		N3.3	Electrolytic copper and long-chip copper-alloys with moderate to poor machining properties		-	-
		N4.1	Thermoplastic polymers		-	-
	N4	N4 2	Thermosetting polymers		_	_
		N4 3	Reinforced polymers or composites		_	_
	M.C	N5 1	Granhite		_	_
	U	(11	urupinte		- 200 HP	- 660
	61	51.1	Titanium artitanium allaur		< 200 HB	
	21	31.2	ritanium or titanium anoys		200 - 280 HB	> 060 ≤ 950
		\$1.3			280 – 360 HB	> 950 ≤ 1200
~	\$2	S2.1	Fe-based high-temperature alloys		< 200 HB	≤ 690
5	52	S2.2	re wasca myn temperature anoys		200 – 280 HB	> 690 ≤ 970
	62	S3.1	Ni bacad biab tamparatura allaur		< 280 HB	≤ 940
	22	\$3.2	mi-based nigh-temperature anoys		280 - 360 HB	> 940 ≤ 1200
	<i>c</i> .	S4.1			< 240 HB	≤ 800
	S4	\$4.2	Co-based high-temperature alloys		240 - 320 HB	> 800 < 1070
	H1	H1 1	Chilled cast iron		< 440 HR	
		H2 1			< 55 HPC	_
	H2	H2.1	Hardened cast iron		< 55 HDC	_
		112.2			> 33 HNC	_
Π	H3	13.1	Hardened steel <55 HRC			-
		H3.2			51 – 55 HKC	-
	H4	H4.1	Hardened steel >55 HRC		55 – 59 HRC	-
		H4.2			> 59 HRC	-

RECOMMENDED OPERATING SPEED (RPM)

AL DC								
					RPM			
ISO					DC [mm]			
		3	6	8	10	12	16	20
D	min	64 000	32 000	24 000	20 000	16 000	12 000	10 000
r	max	83 000	42 000	32 000	25 000	21 000	16 000	13 000
М	min	45 000	23 000	17 000	14 000	12 000	9 000	7 000
	max	64 000	32 000	24 000	20 000	16 000	12 000	10 000
V	min	58 000	29 000	22 000	19 000	15 000	11 000	9 000
N	max	77 000	39 000	29 000	23 000	20 000	15 000	12 000
N	min	64 000	32 000	24 000	20 000	16 000	12 000	10 000
	max	96 000	48 000	36 000	29 000	24 000	18 000	15 000
c	min	45 000	23 000	17 000	14 000	12 000	9 000	7 000
3	max	58 000	29 000	22 000	18 000	15 000	11 000	9 000
	min	51 000	26 000	20 000	16 000	13 000	10 000	8 000
п	max	71 000	36 000	27 000	22 000	18 000	14 000	11 000

ST BF	ł								
				RPM					
ISO		DC [mm]							
		3	6	8	10	12			
D	min	100 000	65 000	60 000	55 000	35 000			
r	max	60 000	45 000	35 000	30 000	20 000			

VA BR									
				RPM					
ISO		DC [mm]							
		3	6	8	10	12			
M	min	100 000	65 000	60 000	55 000	35 000			
INI	max	60 000	30 000	25 000	20 000	15 000			

GRP						
			RPM			
ISO			DC [mm]			
		3	6	8		
N/A	min	25 000	20 000	18 000		
114	max	30 000	25 000	22 000		

AS					
		RPM			
ISO		DC [mm]			
		3			
c	min	60 000			
3	max	80 000			